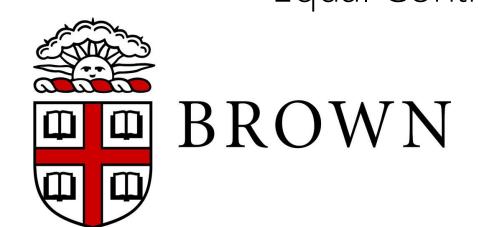
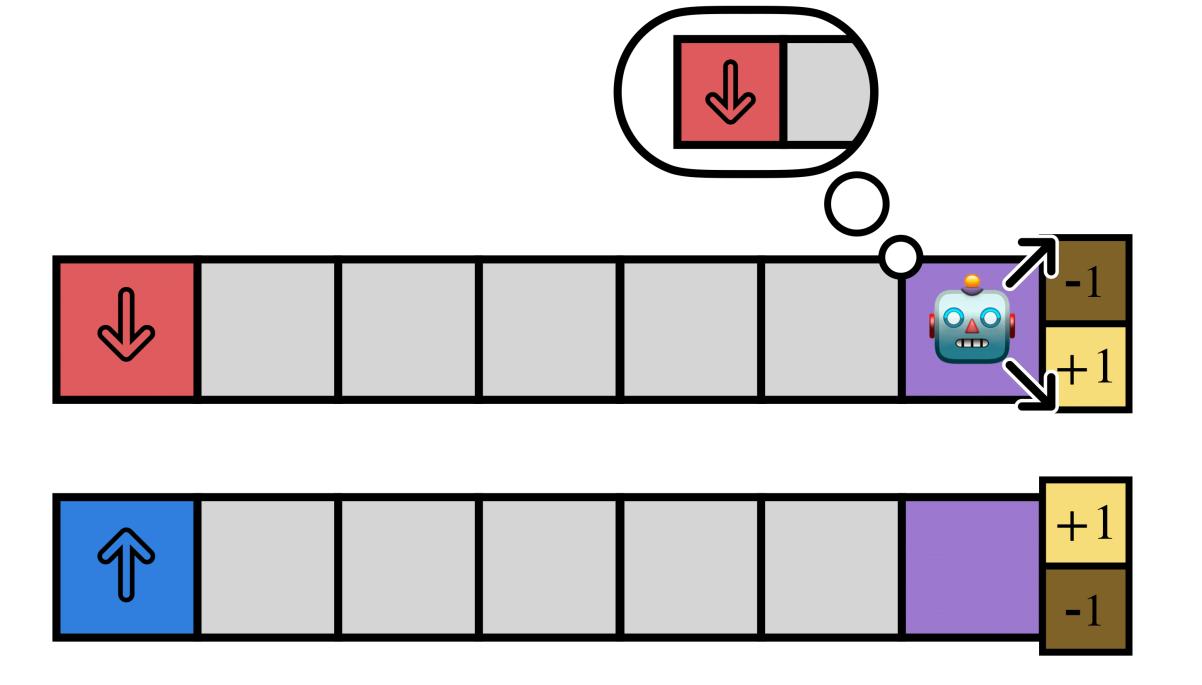
General Value Discrepancies Mitigate Partial Observability in Reinforcement Learning

Peter Koepernik*, Ruo Yu Tao*, Ronald Parr, George Konidaris, Cameron Allen *Equal Contribution



Optimal decision making in partially observable environments requires memory.



A memory retains all relevant information if and only if it is Markov:

$$\mathbb{P}(\omega_{t+1}, m_{t+1} \mid m_t, \omega_t, \dots, m_0, \omega_0) = \mathbb{P}(\omega_{t+1}, m_{t+1} \mid m_t, \omega_t)$$

If Λ is a measure for "non-Markovianness", we can train the memory m_ϕ with gradient descent.

$$\phi \leftarrow \phi - \alpha \nabla_{\phi} \Lambda$$

Lambda discrepancy [1] does this by measuring the difference between MC and TD value estimates: $\Lambda = \|V_{ ext{MC}}^{\pi} - V_{ ext{TD}}^{\pi}\|$ fails without rewards

Performance

Lambda Discrepancy

Generalized Value Discrepancy

sometimes fails even with rewards Example

Generalized Value Discrepancies can always detect partial observability!

Difference between MC/TD estimates of *generalized* value functions

$$\sum_{t} \gamma^{t} r_{t} \longrightarrow \sum_{t} \gamma(\omega_{1}) \dots \gamma(\omega_{t}) f(\omega_{t})$$
observation-dependent Any function of observation discount ("pseudo-reward")

Setting: POMDP where rewards are part of observation: $r_t = R(\omega_t)$ **Definition**: A *generalized value function* is $V_{f,\gamma}(\omega) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma(\omega_0) \dots \gamma(\omega_{t-1}) f(\omega_t) \right]$ for functions $f\colon\Omega o\mathbb{R}$ and $\gamma\colon\Omega o(0,1)$. The associated generalized value discrepancy (GVD) is $\Lambda_{f,\gamma} = \left\| V_{f,\gamma}^{ ext{MC}} - V_{f,\gamma}^{ ext{TD}}
ight\|_{0}^{1}$

Theorem: There is partial observability if and only if $\Lambda_{f,\gamma}>0$ for some $|f,\gamma|$

Furthermore, if there is partial observability then $\Lambda_{f,\gamma}>0$ for almost all f,γ

Ablation: The theorem does *not* hold with any of the following restrictions:

- f is reward, γ is constant (Lambda discrepancy)
- f is general, γ is constant
- f is reward, γ is general