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Abstract. We study a repulsion-diffusion equation with immigration and lin-

ear diffusion, whose asymptotic behaviour is related to stability of long-term
dynamics in spatial population models and other branching particle systems.

We prove well-posedness and find sharp conditions on the repulsion under which
a form of the maximum principle and a strong notion of global boundedness

of solutions hold. The critical asymptotic strength of the repulsion is |x|1−d,

that of the Newtonian potential.

1. Introduction. We consider the following partial differential equation,

∂tρ =
1

2
∆ρ+∇ · (ρ∇W ⋆ ρ) + f, (1)

on Rd for any dimension d ∈ N, started from a non-negative, bounded and integrable
initial condition, where

(i) f is the immigration, which is bounded, integrable, and non-negative,

(ii) W ∈ C2(Rd \ {0}) is the interaction potential, which we assume to be eventu-
ally decreasing.

Our main arguments work in the case where f is time-dependent with sufficient
regularity, see Remark 2.6.

1.1. Motivation. One way to interpret (1) is as the hydrodynamic limit of a
branching particle system (BPS) in which particles appear in Rd at a constant
rate distributed according to f , move along the paths of independent Brownian
motions, and at constant rate branch into a random number of offspring with mean
one. Additionally, a particle at x experiences a drift −∇W (x−y) if there is another
particle at y. Since W is eventually decreasing, this interaction will be repulsive at
long range. Then the solution of (1) describes the population density of this system
in the mean-field limit of a large number of individuals. See [32, 33] for mean-field
arguments in a similar setting.
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BPS with immigration (with or without repulsion or other interactions) appear
in many contexts from biology and physics. They can be used to model air showers
of particles produced by extraterrestrial cosmic rays entering the atmosphere [10],
families of neutrons in subcritical nuclear reactors, which sustain the reaction with
a constant stream of neutrons from an outside source [45], or biological populations
[17, 21, 37]. Immigration in the biological context could arise from different sources.
One might consider a steady flow of individuals from a large, stable population
migrating into a new, uncontested habitat. Secondly, a BPS as considered here goes
extinct in finite time almost-surely, but conditioned on survival it looks exactly like
a BPS with a certain kind of immigration [26]. We go into more detail on this
particular example in Appendix A.

In many of these examples, it is of interest whether the system has stable long-
term dynamics, which in the mean-field limit is reflected in the asymptotic behaviour
of ρt. If we consider first the case where there is no repulsion, then the equation
reduces to ∂tρ = 1

2∆ρ+ f , and the solution (started from zero) is given by

ρt =

∫ t

0

Gs ⋆ f ds,

where Gs(x) = (2πs)−d/2e−x2/(2s), s > 0, is the heat kernel. Provided that f ̸≡ 0:

(i) If d ≤ 2, then ρt ↑ ∞ locally uniformly.

(ii) If d ≥ 3, then ρt converges to a bounded stationary distribution.

This is proved in Lemma 3.12. Indeed it is a known fact that critical branching
processes in one and two dimensions tend to be unstable in the sense that, after a
long time, they have either gone extinct, or they have a lot of mass that concentrates
in large “clumps” [27, 35]. We elaborate on this phenomenon in Appendix A.
One of the reasons this does not occur in the real world is that individuals tend
to migrate away from overcrowded areas, which can be modelled by a pairwise
repulsion between individuals. This motivates the question whether solutions to (1)
remain asymptotically bounded in dimensions d ≤ 2 if the repulsion is sufficiently
strong.

1.2. Related work.

SuperBrownian motion with immigration. A lot of work has been done on super-
Brownian motion with immigration (and no interaction), which is a measure-valued
stochastic process that formally solves (1) without the interaction and an additional
term

√
ρt dW for a space-time white noise W . It can be obtained from the same

BPS whose hydrodynamic limit is given by (1), except that particles don’t interact
and the branching rate is scaled up simultaneously with the particle density. We
go into more detail on superBrownian motion in Appendix A. Amongst the known
results for this process are central limit theorems [30] and large deviation principles
for large [46, 47] and small times [48]. Further results on this and more general
measure-valued diffusions with immigration can be found in [38] and references
therein.

Branching Brownian motion with interaction. Some work has also been done on
branching Brownian motion (BBM) with interaction. Classical BBM, without in-
teraction, is a system of particles that move as independent Brownian motions, and
branch at constant rates into exactly two offspring. The number of particles grows
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exponentially and there is no chance of extinction, which makes it quite different
from the BPS with critical branching considered here. Questions of interest in this
setting are often of extremal type, such as the structure of the process close to
the furthest particle from the origin [1, 2], or large time limits of the population’s
empirical measure if scaled appropriately [22, 23]. Some authors have studied BBM
with repulsive or attractive interactions. Engländer considered the case where par-
ticles have an Ornstein-Uhlenbeck-type attraction or repulsion (that is,W (x) = bx2

for b ∈ R) to or from their common centre of mass [22], and from each other [23].
Similar results have been obtained in the context of supercritical superBrownian
motion [28]. This particular interaction often allows for explicit calculations be-
cause ∇W (x) ∝ x is linear. Note also that in light of our motivation, it is not the
most natural choice of repulsion, since its strength grows, rather than decays with
distance. In another recent paper [6], authors study a BBM in which they intro-
duce short-range pairwise repulsion through a change of measure that penalises the
total time that particles spend within close range of each other. They show that
the dominant effect of the penalisation is a drastic reduction in branching rate, and
that this model is well-approximated by a simplified model in which only branching
events are penalised, and there is no repulsion between individuals once they are
born.

Aggregation-diffusion equations. Equation (1) is also related to a well-studied class
of non-local, nonlinear partial differential equations known as aggregation-diffusion
equations,

∂tρ =
1

2
∆ρ+∇ · (ρ∇W ⋆ ρ), (2)

which differ from (1) in that there is no immigration, and the interaction potential is
attractive at long range rather than repulsive. We refer to [11, 31] for reviews of this
class of equations. Variants of (2) also exist with non-linear diffusion [40, 44]; when
the diffusion is linear as above, (2) is commonly called a McKean Vlasov equation.
Aggregation-diffusion equations have attracted significant interest in the literature
because they describe the large scale dynamics of a wide variety of interacting par-
ticle systems arising in biology, physics, social and other life sciences, which are
often driven by long-range attraction and short range repulsion. Examples include
chemotaxis, bacteria orientation, or motion of human crowds, see [36, 41, 11]. Sig-
nificant mathematical interest is further due to the delicate competition between
aggregation and diffusion, which leads to a dichotomy between well-posedness and
finite time blowup [5, 3, 4, 9, 43, 49, 29, 15, 16]. For sufficiently weak interaction,
the diffusion dominates and the solution asymptotically simplifies to the solution of
the heat equation [12], while a balance between diffusion and aggregation can lead
to the existence of non-trivial steady states [8, 13, 14, 34, 39].

Even though (1) looks similar to (2), its behaviour is markedly different. Where
the competition between aggregation and diffusion decides the behaviour of (2), that
of (1) is decided by the competition between the immigration against the diffusion
and the repulsion, which both work to spread the immigrated mass.

1.3. Summary of results. We first establish well-posedness of (1) under mild
regularity assumptions on f and W . Then we find sharp conditions on W under
which the following global boundedness property holds:

∀ρ0 : ∥ρ0∥∞ ≤M =⇒ sup
t≥0

∥ρt∥∞ ≤M, (3)
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for an explicit value M > 0 which is also sharp. Here ∥·∥∞ = ∥·∥L∞ denotes the
supremum norm. Under the same (sharp) conditions on W , and for the same value
M , a form of the maximum principle holds:

∀ρ0 : ∥ρ0∥∞ ≥M =⇒ max
t≥0

∥ρt∥∞ = ∥ρ0∥∞ . (4)

In particular, (3) and (4) give sufficient conditions onW under which supt≥0 ∥ρt∥∞
< ∞ for any bounded initial condition. Both results follow from a differential
inequality of the form

∂+t ∥ρt∥∞ ≤ ∥f∥∞ − c ∥ρt∥2∞ ,

for a sharp value c = cW ∈ R, which implies (3) and (4) if cW > 0. See Theorems 2.3
to 2.5 for precise statements. It will turn out that the critical strength of the
repulsion for cW > 0 to hold is |∇W (x)| ∼ |x|1−d, and W must be singular at
the origin. A natural example that satisfies both assumptions is the Newtonian
potential,

WN (x) = c−1
d

{
1

d−2 |x|
2−d, d ̸= 2,

− log |x|, d = 2,
(5)

where cd is the surface area of the unit ball in Rd. The Newtonian potential is
the Green’s function of the Laplace equation (that is, ∆WN = −δ0 in a distribu-
tional sense), and has the physical interpretation of the electrodynamical repulsive
potential in Rd.

1.4. Outline. In the following section we will give precise statements of our results,
and Section 3 contains the proofs, followed by a short outlook in Section 4. In
Appendix A we elaborate on the connection between (1) and stability of long-term
dynamics in spatial population models, and in Appendix B we give a brief definition
of fractional Sobolev spaces, and recall and proof some basic facts about them.

2. Results. Our results require the following regularity assumptions. By Wγ,p we
denote the usual Sobolev spaces on Rd, where p ∈ [1,∞], and γ ≥ 0 may not be an
integer. If γ = 0 then Wγ,p = Lp is the usual Lp space. See Appendix B for a brief
and [19, 18, 7] for a comprehensive introduction to fractional Sobolev spaces. We
further write g+ = g ∨ 0 and g− = (−g) ∨ 0 for the positive and negative part of a
function g : Rd → R, respectively.

Assumption (A). (i) There is γf ∈ (0, 1) such that f ∈ Wγf ,1 ∩Wγf ,∞.

(ii) ∇W and ∆W are bounded on Rd \B(0, r) for all r > 0, and locally integrable.

(iii) At least one of (∆W )− and (∆W )+ is integrable.

Assumption (A)(i) is required to ensure that the mild solution is also a clas-
sical solution. A simple sufficient criterion is that f is compactly supported and
Hölder continuous (with any positive exponent). Assumption (A)(iii) ensures that∫
∆W :=

∫
Rd ∆W (x) dx ∈ [−∞,∞] exists. As we will see shortly, the fact that W

is eventually decreasing implies
∫
∆W < ∞ and hence that in fact (∆W )+ must

be integrable. Here and later, the integral is in a strict, classical sense; for example
the Newtonian potential has ∆WN ≡ 0 outside the null set {0}, so

∫
∆WN = 0.

The following well-posedness result only requires (A)(i), and (A)(ii) for ∇W , but
no assumptions on ∆W .
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Theorem 2.1 (Well-posedness). For every initial condition there exists a unique
mild solution to (1) up to a maximal existence time T ⋆ ∈ (0,∞]. It is non-negative
and solves (1) in the classical sense on (0, T ⋆).

In this statement and the remainder of Section 2, we only consider initial con-
ditions that are non-negative, bounded, and integrable, without mentioning this
explicitly. Precise statements are in Theorems 3.2 and 3.3 below. We note that
it is not possible to prove T ⋆ = ∞ under the current assumptions, because the
short-range behaviour of W could lead to finite-time blowup.

The main result of this work is the identification of an index cW ∈ R that plays
a critical role in the behaviour of solutions to (1). We first state our main results
in terms of cW , and discuss its definition and properties afterwards.

Proposition 2.2. If cW > 0, then T ⋆ = ∞ for every initial condition.

Theorem 2.3 (Maximum Principle). If cW > 0 and M =
√

∥f∥∞ /cW , then

∥ρ0∥∞ ≥M =⇒ max
0≤t<T⋆

∥ρt∥∞ = ∥ρ0∥∞ (6)

for every initial condition ρ0. IfM <
√

∥f∥∞ /cW , or cW < 0 andM > 0 arbitrary,
then there exists an initial condition ρ0 for which (6) is false.

Theorem 2.4 (Global Boundedness). If cW > 0 and M =
√
∥f∥∞ /cW , then

∥ρ0∥∞ ≤M =⇒ sup
0≤t<T⋆

∥ρt∥∞ ≤M (7)

for every initial condition ρ0. IfM <
√

∥f∥∞ /cW , or cW < 0 andM > 0 arbitrary,
then there exists an initial condition ρ0 such that (7) is false.

Both theorems are consequences of the following result. For a function g : [0, T ) →
[0,∞) and t ∈ [0, T ), write ∂+t g(t) := limh↓0

g(t+h)−g(t)
h .

Theorem 2.5. For every initial condition and t ∈ [0, T ⋆),

∂+t ∥ρt∥∞ ≤ ∥f∥∞ − cW ∥ρt∥2∞ . (8)

For every c > cW , there exists an initial condition such that (8) is false at time
zero if cW is replaced by c.

The differential inequality (8) can be turned into an explicit upper bound, which
implies the positive assertions of Theorems 2.3 and 2.4. See Corollary 3.9 for a
precise statement, and Fig. 1 for an illustration. We remark that counterexamples
for ρ0 in the negative statements of all three theorems can be chosen to be infinitely
differentiable and compactly supported.

Remark 2.6. If the immigration f is time-dependent with sufficient regularity, then
existence and uniqueness for solutions to (1) still hold, and Theorem 2.5 remains
true with (8) replaced by

∂+t ∥ρt∥∞ ≤ ∥ft∥∞ − cW ∥ρt∥2∞ , t ∈ [0, T ⋆).

In particular, T ⋆ = ∞ and supt≥0 ∥ρt∥∞ < ∞ for any initial condition as long as
cW > 0 and supt≥0 ∥ft∥∞ <∞.

We now define the index cW . Denote by

⟨∇W ⟩ (R) := 1

|∂B(0, R)|

∫
∂B(0,R)

∇W · dn̂ (9)
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t

M

∥ρ0∥∞ < M

∥ρ0∥∞ > M

Figure 1. Evolution of the upper bound on ∥ρt∥∞ in Corollary 3.9
for cW > 0 and different values of ∥ρ0∥∞.

the average radial part of ∇W at a distance R > 0, where |∂B(0, R)| = cdR
d−1 is

the surface area of B(0, R). Recall the definition of the Newtonian potential from
(5).

Lemma 2.7. The following limits exist,

ηW := lim
r→0

⟨∇W ⟩ (r)
⟨∇WN ⟩ (r)

, αW := lim
R→∞

⟨∇W ⟩ (R)
⟨∇WN ⟩ (R)

, (10)

with ηW ∈ R and αW ∈ [0,∞], and αW = ηW −
∫
(∆W ).

The quantities ηW and αW compare the strength of the repulsion to that of
the Newtonian potential at short and long range, respectively. As we will see in
Lemma 3.5 below, ηW also determines the singular behaviour of W at the origin, in
that ∆W contains, in a distributional sense, a multiple −ηW of the Dirac delta at
zero. Note that Lemma 2.7 implies

∫
(∆W )+ < ∞, because ηW ∈ R and αW ≥ 0.

Thus,

cW := ηW −
∫

(∆W )+ (11)

is well-defined. If αW <∞ then cW = αW −
∫
(∆W )− by Lemma 2.7, so in fact

cW =
1

2

(
αW + ηW −

∫
|∆W |

)
, if αW <∞. (12)

Our main results apply positively only to potentials with cW > 0. From the dif-
ferent representations of cW it follows that αW > 0 and ηW > 0 are both necessary
conditions. That is, the critical strength of the repulsion is |∇W (x)| ∼ |x|1−d, and
the repulsion potential has to have a (Newtonian) singularity at the origin. The
latter is not entirely surprising, since we would not generally expect to be able to
find strong bounds on the supremum norm (like (6) to (8)) of the solution to a PDE
with smooth non-local interaction. Before we give examples for W , we note that
(11) and linearity of ηW in W imply that

cW+W ′ ≥ cW + cW ′ , caW = acW , (13)

for any a > 0 and potentials W,W ′ satisfying (A). This implies that the class of
potentials with cW > 0 is closed under positive linear combinations, as well as small

perturbations: If cW > 0 and W̃ is a perturbative potential, then c
W+εW̃

> 0 for

small ε > 0, in fact as long as ε < cW |c
W̃
|−1. An example for a perturbation could

be a smooth potential that decays faster than Newtonian (so that ηW = αW = 0),

in which case c
W̃

= − 1
2

∫
|∆W̃ | by (12).
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Examples for interaction potentials that satisfy (A) include repulsive power laws

W (x) = −PA(x) := −

{
|x|A
A , A ̸= 0,

log |x|, A = 0,

with 1 ≥ A ≥ 2−d (for Theorem 2.1 to hold it is sufficient if A > 1−d), and Morse
potentials [20],

W (x) = −CAe
−|x|/ℓA + CRe

−|x|/ℓR ,

with CA, CR, ℓA, ℓB > 0, which are repulsive at long range if ℓR < ℓA. Of these the
most natural example with cW > 0 is the Newtonian potential with αW = ηW =
cW = 1, which in this notation is WN = −c−1

d P2−d. Another family of examples is
a mixture of repulsive power laws

W (x) =WN (x)− PA(x), 1 ≥ A > 2− d,

which have |∇W (x)| ∼ |x|1−d at short and |∇W (x)| ∼ |x|A−1 at long range, and
αW = ∞, ηW = cW = 1. Morse potentials have ηW = αW = 0 and cW < 0, but
could be used as a perturbation, see the earlier discussion following (13).

3. Proofs. We write C for an unimportant positive constant whose value may
change from one appearance to the next. For γ ≥ 0,

X γ := Wγ,1 ∩Wγ,∞, |||·|||γ := ∥·∥Wγ,1 + ∥·∥Wγ,∞ , (14)

as well as X := X 0 = L1 ∩ L∞ and |||·||| := |||·|||0 = ∥·∥L1 + ∥·∥∞, and X+ :=
{f ∈ X : f ≥ 0}. If g : Rd → Rm for some m ∈ N, then ∥g∥Lp :=

∑m
i=1 ∥gi∥Lp ,

similarly for other norms. Recall (14), and note that by Lemma B.2, X γ with this
norm is a Banach space which embeds continuously into C⌊γ⌋−1,1(Rd) if γ ≥ 1, and
into C⌊γ⌋,γ−⌊γ⌋(Rd) if γ ∈ (0,∞) \ N. Here, Ck,β(Rd) for k ∈ N0 and β ∈ (0, 1] is
the space of functions g : Rd → R which are k times continuously differentiable and
for which

∥g∥Ck,β :=
∑
|α|<k

∥∂αg∥L∞ +
∑
|α|=k

sup
x̸=y

|∂αg(x)− ∂αg(y)|
|x− y|β

<∞, (15)

with the usual notational conventions for multi-indices α.

3.1. Existence and regularity of solutions. This section contains proofs of local
in time well-posedness and regularity of solutions to (1). They only require (A)(i),
and (A)(ii) for∇W , but no assumptions on ∆W . Note that (A)(i) becomes f ∈ X γf

in the notation (14). Many of the ideas in this section were inspired by arguments
in Section 2 of [12].

We begin by establishing well-posedness of a weak version of (1). More precisely,
by Duhamel’s formula we can formally rewrite (1) with initial condition ρ0 ∈ X as
an integral equation

ρt = Gt ⋆ ρ0 +

∫ t

0

Gs ⋆ f ds+

∫ t

0

∇Gt−s ⋆ (ρs∇W ⋆ ρs) ds, (16)

where (Gs : Rd → (0,∞))s>0 denotes the heat kernel, and F ⋆ H :=
∑d

i=1 Fi ⋆ Hi

for vector fields F and H.

Lemma 3.1. If γ ≥ 0 then there exists C > 0 such that for any g ∈ X γ ,

∥∇W ⋆ g∥Wγ,∞ ≤ C|||g|||γ .

In particular, |||g∇W ⋆ g||| ≤ C|||g|||2
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Proof. Denote F1 := ∇W1B(0,1) ∈ L1 and F2 := ∇W1Rd\B(0,1) ∈ L∞. Then, using
the fractional version of Young’s convolution inequality (see Theorem A.1 in [12]),

∥∇W ⋆ g∥Wγ,∞ ≤ ∥F1 ⋆ g∥Wγ,∞ + ∥F2 ⋆ g∥Wγ,∞

≤ C(∥F1∥L1 ∥g∥Wγ,∞ + ∥F2∥L∞ ∥g∥Wγ,1)

≤ C(∥F1∥L1 + ∥F2∥L∞)|||g|||γ .

For the additional claim, if p ∈ {1,∞}, then

∥g∇W ⋆ g∥Lp ≤ ∥g∥Lp ∥∇W ⋆ g∥L∞ ≤ C|||g|||2.

We now prove well-posedness of (16) locally in time. Standard facts that we will
use repeatedly are that, for γ ≥ 0 and s > 0,

∥Gs∥Wγ,1 ≤ Cs−γ/2, ∥∇Gs∥Wγ,1 ≤ Cs−(1+γ)/2. (17)

(See, for example, [12, p.6].)

Theorem 3.2 (Local in time well-posedness). Given ρ0 ∈ X , there is a T ⋆ ∈ (0,∞]
and a ρ ∈ C([0, T ⋆),X ) which solves (16) started at ρ0 and such that any solution
ρ̃ ∈ C([0, T ),X ) of (16) starting at ρ0 satisfies T ≤ T ⋆ and coincides with ρ on
[0, T ). Furthermore, if T ⋆ < ∞ then ∥ρt∥∞ → ∞ as t ↑ T ⋆. If ρ0, f , and W are
radially symmetric, then so is ρt for all t ∈ [0, T ⋆).

Proof. For fixed T > 0 define F : C([0, T ],X ) → C([0, T ],X ) by the right-hand side
(RHS) of (16), that is,

F [ρ]t = Gt ⋆ ρ0 +

∫ t

0

Gs ⋆ f ds+

∫ t

0

∇Gt−s ⋆ (ρs∇W ⋆ ρs) ds, t ∈ [0, T ].

We write |||ρ||| := sup0≤s≤T |||ρs||| for ρ ∈ C([0, T ],X ). For p ∈ {1,∞}, by Young’s
convolutional inequality and Lemma 3.1,

∥F [ρ]t∥Lp ≤ ∥Gt∥L1 ∥ρ0∥Lp +

∫ t

0

∥Gs∥L1 ∥f∥Lp ds

+

∫ t

0

∥∇Gt−s∥L1 ∥ρs∥Lp ∥∇W ⋆ ρs∥L∞ ds

≤ ∥ρ0∥Lp + C

(
t+

∫ t

0

(t− s)−1/2 ∥ρs∥Lp |||ρs|||ds
)

≤ |||ρ0|||+ C

(
t+

√
t sup
s≤t

|||ρs|||2
)
.

This implies

|||F [ρ]||| ≤ |||ρ0|||+ C
(
T +

√
T |||ρ|||2

)
. (18)

(In particular, F [ρ]t ∈ X so F is well-defined.) By a similar argument, if ρ1, ρ2 ∈
C([0, T ],X ), then∥∥F [ρ1]t −F [ρ2]t

∥∥
Lp

≤
∫ t

0

∥∇Gt−s∥L1

∥∥ρ1s∇W ⋆ ρ1s − ρ2s∇W ⋆ ρ2s
∥∥
Lp ds

=

∫ t

0

∥∇Gt−s∥L1

∥∥ρ1s∇W ⋆ (ρ1s − ρ2s) + (ρ1s − ρ2s)∇W ⋆ ρ2s
∥∥
Lp ds
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≤ C

∫ t

0

(t− s)−1/2
[ ∥∥ρ1s∥∥Lp

∣∣∣∣∣∣ρ1s − ρ2s
∣∣∣∣∣∣+ ∥∥ρ1s − ρ2s

∥∥
Lp

∣∣∣∣∣∣ρ2s∣∣∣∣∣∣] ds
≤ C

√
t sup
s≤t

(∣∣∣∣∣∣ρ1s∣∣∣∣∣∣+ ∣∣∣∣∣∣ρ2s∣∣∣∣∣∣) ∣∣∣∣∣∣ρ1s − ρ2s
∣∣∣∣∣∣,

so ∣∣∣∣∣∣F [ρ1]−F [ρ2]
∣∣∣∣∣∣ ≤ C

√
T
(∣∣∣∣∣∣ρ1∣∣∣∣∣∣+ ∣∣∣∣∣∣ρ2∣∣∣∣∣∣) ∣∣∣∣∣∣ρ1 − ρ2

∣∣∣∣∣∣. (19)

Put Y = {g ∈ X : |||g||| ≤ |||ρ0|||+ 1}. Then by (18) and (19), T > 0 can be chosen
small enough so that F maps to itself and is a contraction on the space C([0, T ],Y).
This shows that

T ⋆ := sup {t ≥ 0: there is a solution in C([0, T ],X ) to (16)} > 0.

Suppose now that ρ and ρ̃ are two different solutions to (16) on [0, t] for some
t ∈ (0, T ⋆], starting at ρ0. Let

t0 := sup {s ∈ [0, t] : ρ(r) = ρ̃(r)∀r ≤ s} ∈ [0, t].

Suppose that t0 < t, let t1 := t0 + δ ∈ (t0, t) for some δ ∈ (0, t − t0), and define
F : C([t0, t1],X ) → C([t0, t1],X ) by

F [u]s = Gs−t0 ⋆ ρ(t0) +

∫ s

t0

Gs−r ⋆ f dr +

∫ s

t0

∇Gs−r ⋆ (ur∇W ⋆ ur) dr,

for s ∈ [t0, t1]. PutK := |||ρ|||∨|||ρ̃|||. Similarly to before we can show that |||F [u]s||| ≤
K + C(δ +

√
δ|||u|||2) for some C > 0 and all s ∈ [t0, t1], hence for sufficiently small

δ > 0, F maps to itself and, by an argument identical to that leading to (19), is a
contraction on C([t0, t1],Y), where Y = {g ∈ X : |||g||| ≤ K + 1}, so it has a unique
fixed point. Since the restrictions of both ρ and ρ̃ to [t0, t1] are fixed points of F ,
we conclude they must coincide on [t0, t1], contradicting the definition of t0.

We have proved that all solutions must coincide at all times where both are
defined, in particular there exists a ρ ∈ C([0, T ⋆), |||·|||) which solves (16), and such
that any solution ρ̃ ∈ C([0, T ), |||·|||) of (16) satisfies T ≤ T ⋆ and coincides with ρ
on [0, T ).

Now suppose that T ⋆ <∞, in which case we show that

|||ρ(t)||| −→ ∞, t ↑ T ⋆.

This already implies that ∥ρ(t)∥∞ → ∞ as t ↑ T ⋆ because supt∈[0,T⋆) ∥ρ(t)∥L1 <∞
as a consequence of Lemma 3.4 below. Assume for contradiction that there is a
K > 0 and a sequence 0 < Tn ↑ T ⋆ such that |||ρ(Tn)||| ≤ K for all n ∈ N. Then we
define Fn : C([Tn, Tn + δ],X ) → C([Tn, Tn + δ],X ) by

Fn[u]t = Gt−Tn ⋆ ρ(Tn) +

∫ t

Tn

Gt−s ⋆ f ds

+

∫ t

Tn

∇Gt−s ⋆ (us∇W ⋆ us) ds, Tn ≤ t ≤ Tn + δ,

for some δ > 0. Similarly to before we show |||Fn[u]||| ≤ K + C(δ +
√
δ|||u|||2) for

some C > 0, and (19) with T replaced by δ. Now choose δ small enough that
Fn (maps to itself and) is a contraction on the space C([Tn, Tn + δ],Y) where
Y = {g ∈ X : g : |||g||| ≤ K + 1}. This choice of δ can be made independent of n,
so there exists n ∈ N with Tn + δ > T ⋆, and we can concatenate ρ

∣∣
[0,Tn]

with the

fixed point of Fn to obtain a solution to (16) defined on [0, Tn + δ] ⊋ [0, T ⋆], a
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contradiction. This also implies that, if T ⋆ <∞, there cannot be a solution defined
on [0, T ⋆].

If f , W , and ρ0 are radially symmetric, then F preserves radial symmetry, so the
fixed point iteration started at the constant in time function (ρt ≡ ρ0 : t ∈ [0, T )) is
radially symmetric at every step and converges to ρ uniformly on Rd, so ρ is radially
symmetric.

For the remainder of this section, we assume some ρ0 ∈ X+ to be given, and
denote by ρ ∈ C([0, T ⋆),X ) the unique solution to (16) started at ρ0.

Theorem 3.3 (Regularity). For any γ ∈ (0, 2 + γf ),

ρ ∈ C([0, T ⋆),X+) ∩ C((0, T ⋆),X γ)

In particular, ρ has bounded C2,γf (Rd)-norm on compact subsets of (0, T ⋆), and
solves (1) in the classical sense on (0, T ⋆). If |||ρ0|||γ <∞ (in particular if ρ0 ≡ 0),

then ρ ∈ C([0, T ⋆),X γ).

Proof. Fix T ∈ (0, T ⋆). Then sup0≤s≤T |||ρs||| < ∞, so it suffices to show that for
any δ > 0, γ ∈ [γf , 2 + γf ),

sup
δ≤s≤T

|||ρs|||γ−γf
<∞ =⇒ sup

2δ≤s≤T
|||ρs|||γ <∞. (20)

Indeed, by iteration this implies that ρ ∈ C((t0, t1),X γ) for all 0 < t0 < t1 < T ⋆

and hence ρ ∈ C((0, T ⋆),X γ), for all γ ∈ [0, 2 + γf ).
So let γ ∈ [γf , 2 + γf ), δ > 0, and assume that supδ≤s≤T |||ρs|||γ−γf

< ∞. Let

p ∈ {1,∞} and t ∈ [2δ, T ]. Then,

∥ρt∥Wγ,p ≤ ∥Gt∥Wγ,1 ∥ρ0∥Lp +

∫ t

0

∥Gs∥Wγ−γf ,1 ∥f∥Wγf ,p ds (21)

+

∫ t

0

∥∇Gt−s ⋆ (ρs∇W ⋆ ρs)∥Wγ,p ds.

By (17),

∥Gt∥Wγ,1 ∥ρ0∥Lp +

∫ t

0

∥Gs∥Wγ−γf ,1 ∥f∥Wγf ,p ds

≤ C

(
t−γ/2 +

∫ t

0

s−(γ−γf )/2 ds

)
(22)

≤ C

(
δ−γ/2 +

∫ T

0

s−(γ−γf )/2 ds

)
,

which is a constant independent of t given δ, γ, T , and finite because γ − γf < 2. If
γ = γf , in particular γ < 1, then by Young’s fractional convolution inequality and
Lemma 3.1,∫ t

0

∥∇Gt−s ⋆ (ρs∇W ⋆ ρs)∥Wγ,p ds ≤
∫ T

0

∥∇Gt−s∥Wγ,1 ∥ρs∇W ⋆ ρs∥Lp ds

≤ C

(∫ T

0

s−(1+γ)/2 ds

)
sup

0≤s≤T
|||ρs|||2,
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which is a finite constant depending only on T and γf . If γ > γf , then we fix
0 < ε < (1 − γf ) ∧ (γ − γf ), and bound, using Young’s fractional convolution
inequality,∫ t

0

∥∇Gt−s ⋆ (ρs∇W ⋆ ρs)∥Wγ,p ds

≤
∫ δ

0

∥∇Gt−s∥Wγ,1 ∥ρs∇W ⋆ ρs∥Lp ds (23)

+

∫ t

δ

∥∇Gt−s∥Wγf+ε,1 ∥ρs∇W ⋆ ρs∥Wγ−γf−ε,p ds.

By Lemmas 3.1, B.1 and B.3, putting β := γ − γf ,

∥ρs∇W ⋆ ρs∥Wβ−ε,p ≤ ∥ρs∥Wβ,p ∥∇W ⋆ ρs∥Wβ,∞

≤ C ∥ρs∥Wβ,p |||ρs|||β
≤ C|||ρs|||2β .

Thus,∫ t

δ

∥∇Gt−s∥Wγf+ε,1 ∥ρs∇W ⋆ ρs∥Wγ−γf−ε,p ds

≤ C sup
δ≤s<T

|||ρs|||γ−γf

∫ T

0

s−(1+γf+ε)/2 ds ≤ C sup
δ≤s≤T

|||ρs|||γ−γf
. (24)

By Lemma 3.1,∫ δ

0

∥∇Gt−s∥Wγ,1 ∥ρs∇W ⋆ ρs∥Lp ds ≤ C sup
0≤s≤T

|||ρs|||2 ·
∫ T

δ

s−(1+γ)/2 ds <∞,

which, given δ, T, γ, is a constant independent of t. Combining this with (21) to (24)
gives

∥ρt∥Wγ,p ≤ C

(
1 + sup

δ≤s≤T
|||ρs|||2γ−γf

)
<∞,

for any t ∈ [2δ, T ] and p ∈ {1,∞}, for C > 0 that does not depend on t given δ, T ,
and γ. We conclude

sup
2δ≤s≤T

|||ρs|||γ <∞

as claimed. Then recall from Lemma B.2 that X 2+γf ↪→ C2,γf (Rd).
If γ ∈ [0, 2 + γf ) and |||ρ0|||γ < ∞, we can bound |||Gt ⋆ ρ0|||γ ≤ ∥Gt∥L1 |||ρ0|||γ =

|||ρ0|||γ < ∞ which is uniform in t ∈ [0, T ⋆), in contrast to the bound |||Gt ⋆ ρ0||| ≤
Ct−γ/2 that we used in (21). This lets us prove (20) with δ = 0, giving ρ ∈
C([0, T ⋆),X γ).

We now show that ρ solves (1) in the classical sense on (0, T ⋆). Clearly ρ(0, ·) =
ρ0. It suffices to show now that (1) is satisfied at a fixed t ∈ (0, T ⋆) and x ∈ Rd.
Because of the instant regularisation of ρ, we can assume without loss of generality
that already ρ0 ∈ X γ for all γ ∈ [0, 2 + γf ), so that sup0≤s≤t |||ρs|||γ < ∞ by the
above, and thus

sup
0≤s≤t

|||ρs∇W ⋆ ρs|||γ <∞, γ ∈ [0, 2 + γf ) (25)
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by Lemmas 3.1 and B.3. In particular ρs∇W ⋆ ρs ∈ C2(Rd) for all s ∈ [0, t], so we
can rewrite (16) as

ρ(t) = Gt ⋆ ρ0 +

∫ t

0

Gt−s ⋆ f ds+

∫ t

0

Gt−s ⋆∇ · (ρs∇W ⋆ ρs) ds.

Recall that G : [0, t]× Rd → R is smooth with globally bounded derivatives of any
order, and ∂tGt = 1

2∆Gt. To show that we can pull the time derivative into the
integrals, we establish the following bounds.

∥(∂tGt−s) ⋆ f∥∞ =
1

2
∥(∆Gt−s) ⋆ f∥∞ ≤ C ∥Gt−s ⋆ f∥W2,∞

≤ C ∥Gt−s∥W2−γf ,1 ∥f∥Wγf ,∞

≤ C(t− s)−(2−γf )/2|||f |||γf
,

which is integrable over (0, t). Furthermore,

∥(∂tGt−s) ⋆∇ · (ρs∇W ⋆ ρs)∥∞ =
1

2
∥(∆Gt−s) ⋆∇ · (ρs∇W ⋆ ρs)∥∞

≤ C ∥Gt−s ⋆ ρs∇W ⋆ ρs∥W3,∞

≤ C ∥Gt−s∥W1,1 ∥ρs∇W ⋆ ρs∥W2,∞

≤ C(t− s)−1/2

(
sup

0≤s≤t
|||ρs|||22

)
,

where we recalled (25) and Lemma 3.1 in the final step, which is also integrable
over (0, t). Hence, ρ(·, x) is differentiable at t and

∂tρt = (∂tGt) ⋆ ρ0 + f +

∫ t

0

(∂tGt−s) ⋆ f ds+∇ · (ρt∇W ⋆ ρt)

+

∫ t

0

(∂tGt−s) ⋆∇ · (ρs∇W ⋆ ρs) ds

=
1

2
∆ρt +∇ · (ρt∇W ⋆ ρt) + f.

Non-negativity will be proved in the following lemma.

Lemma 3.4. For any t ∈ [0, T ⋆), ρt is non-negative and ∥ρt∥L1 = ∥ρ0∥L1+t ∥f∥L1 .

Proof. The idea is to show that
∫
ρ(t, x)− dx = 0 for all t ≥ 0. For that purpose,

let (jε)ε>0 be a family of smooth and convex functions such that jε(s) = (−s) ∨ 0
on R \ [−ε, 0], and 0 ≤ j′′ε ≤ 2/ε in [−ε, 0]. Then for any ε > 0,

d

dt

∫
jε(ρ(t, x)) dx =

∫
Rd

j′ε(ρ(t, x))

(
1

2
∆ρt +∇ · (ρt∇W ⋆ ρt) + f

)
(x) dx

≤ −
∫
Rd

j′′ε (ρ(t, x))∇ρt(x) ·
(
1

2
∇ρt + ρt∇W ⋆ ρt

)
(x) dx

≤ −
∫
Rd

Jε(ρ(t, x))∇ρt(x) · (∇W ⋆ ρt)(x) dx

=: Hε(t),

(26)

where in the second step we used that j′ε ≤ 0 and f ≥ 0, and in the third step

we used that j′′ε (ρ) |∇ρ|
2 ≥ 0 and put Jε(s) := j′′ε (s)s. To understand why this

was helpful, formally replace jε(s) by j(s) := (−s) ∨ 0, so that the left-hand side
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(LHS) turns into d
dt

∫
ρ(t, x)− dx, and the RHS is zero because j′′(x) = δ(x), so

J(ρ) = δ(ρ)ρ = 0.

More precisely, (26) implies
∫
jε(ρ(t, x)) dx ≤ jε(ρ0(x))+

∫ t

0
Hε(s) ds for all ε > 0

and t ∈ [0, T ⋆). The LHS converges by dominated convergence to
∫
ρ(t, x)− dx, and

the RHS converges by dominated convergence to zero. Indeed, Jε → 0 pointwise
on R \ {0} as ε → 0, and 0 ≤ Jε(s) ≤ 2 for all s ∈ R and ε > 0 by assumption
on jε. Hence,

∫
ρ(t, x)− dx = 0 for all t ∈ [0, T ⋆), so by continuity of ρ(t), it is

non-negative for all t ∈ [0, T ⋆).
For the second claim,∫
ρ(t, x) dx =

∫
Rd

∫
Rd

Gt(x− y)ρ0(y) dy dx+

∫ t

0

∫
Rd

∫
Rd

Gs(x− y)f(y) dy dx ds

+

∫ t

0

∫ ∫
(∇Gt−s)(x− y)(ρs∇W ⋆ ρs)(y) dy dxds

=

∫
ρ0(x) dx+ t

(∫
Rd

f(x) dx

)
,

where we used that
∫
Gs = 1 and

∫
∇Gs = 0 for all s > 0.

3.2. Maximum principle and global boundedness. The main goal of this sec-
tion is to prove Theorems 2.3 to 2.5. For clarity of presentation, we will postpone
the proofs of some auxiliary lemmas until after we show Theorems 2.3 to 2.5.

The representation of cW used mainly in the proofs is cW = ηW −
∫
(∆W )+, and

a crucial first step is to establish the following meaning of ηW .

Lemma 3.5. There is ξW ∈ Rd such that for any g ∈ X 1 ∩ C1(Rd) (in particular
any g ∈ X γ with γ > 1),

∇ · (∇W ⋆ g) = (∆W ) ⋆ g − ηW g + ξW · ∇g.
If W (x) =W (−x) for all x ∈ Rd \ {0}, then ξW = 0.

That is, ∆W can be viewed in a distributional sense as a sum of the function
x 7→ ∆W (x) on Rd \ {0}, and the distribution −ηW δ0 − ξW · ∇δ0, where δ0 denotes
the Dirac mass at the origin. The significance of this lies in the following application:
If g is a non-negative function with a global maximum at some x0, then ∇g(x0) = 0
and g(x0) = ∥g∥∞, so

∇ · (∇W ⋆ g)(x0) = (∆W ⋆ g)(x0)− ηW g(x0)

≤ ∥g∥∞
∫

(∆W )+ − ηW g(x0)

= −cW g(x0).

This already proves the first assertion of the following lemma. Denote by C∞
c+(Rd)

the set of infinitely differentiable, compactly supported, non-negative functions on
Rd.

Lemma 3.6. If g ∈ X 1 ∩ C1(Rd) is non-negative and has a global maximum at
x0 ∈ Rd, then

∇ · (∇W ⋆ g)(x0) ≤ −cW g(x0). (27)

For any c > cW and x0 ∈ Rd, there exists g ∈ C∞
c+(Rd) such that g has a global

maximum of any given height at x0, ∆g(x0) = 0, and

∇ · (∇W ⋆ g)(x0) > −cg(x0).
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Note that if W = WN is the Newtonian potential, then ∇ · (∇W ⋆ g) = −g
which trivially implies the assertion of Lemma 3.6. Now if t > 0 and ρt has a global
maximum at some x0 ∈ Rd, then ∆ρt(x0) ≤ 0, ∇ρt(x0) = 0, and ρt(x0) = ∥ρt∥∞,
so evaluating the PDE (1) at (t, x0) and using Lemma 3.5 gives

∂tρt(x0) ≤ ρt(x0)∇ · (∇W ⋆ ρt)(x0) + f(x0)

≤ ∥f∥∞ − cW ∥ρt∥2∞ .
(28)

This is almost the differential inequality in Theorem 2.5, where the LHS is ∂+t ∥ρt∥∞,
and the following two lemmas close that gap.

Lemma 3.7. Suppose T > 0 and g ∈ C([0, T ],X+) such that g(t, ·) is Lips-
chitz continuous for all t ∈ (0, T ], and g is differentiable in time on (0, T ] with
∂tg : (0, T ]×Rd → R jointly continuous. Suppose further that there is a continuous
function C : [0, T ] → [0,∞) such that for all t ∈ (0, T ], if gt has a global maximum
at x,

∂tg(t, x) ≤ C(t).

Then for all t ∈ [0, T ),
∂+t ∥gt∥∞ ≤ C(t).

Lemma 3.8. For any ρ0 ∈ X+ and T ∈ (0, T ⋆), ρ : [0, T ] × Rd → [0,∞) satisfies
the assumptions of Lemma 3.7.

We can now prove Theorem 2.5.

Proof of Theorem 2.5. The differential inequality (8) follows from (28) and Lem-
mas 3.7 and 3.8, so it remains to prove sharpness. Let c > cW and h > 0, put
c′ := (c+cW )/2 > cW , and choose x0 ∈ Rd with f(x0) ≥ ∥f∥∞−(c−cW )h2/2. Then
by Lemma 3.6, there is ρ0 ∈ C∞

c+(Rd) such that ρ0 has a global maximum of height h
at x0, ∆ρ0(x0) = 0, ρ0(x0) = ∥ρ0∥∞ = h, and∇·(∇W⋆ρ0)(x0) > −c′ρ0(x0) = −c′h.
Then, since ∇ρ0(x0) = 0,

∂tρ(t, x0)
∣∣∣
t=0

= ρ0(x0)∇ · (∇W ⋆ ρ0)(x0) + f(x0)

> −c′h2 + ∥f∥∞ − (c− cW )h2/2

= ∥f∥∞ − c ∥ρ0∥2∞ .

In particular,

∂+t ∥ρt∥∞
∣∣∣
t=0

= lim
t↓0

∥ρt∥∞ − ∥ρ0∥∞
t

≥ lim
t↓0

ρ(t, x0)− ρ0(x0)

t

= ∂tρ(t, x0)
∣∣∣
t=0

> ∥f∥∞ − c ∥ρ0∥2∞ .

As we mentioned in Section 2, the differential inequality (8) can be turned into
an explicit upper bound, recall also Fig. 1 for an illustration.

Corollary 3.9. If cW > 0 and ρ0 ∈ X+, then T
⋆ = ∞ and for all t ≥ 0,

∥ρt∥∞ ≤M


coth(McW (t+ t0)), ∥ρ0∥∞ > M,

tanh(McW (t+ t0)), ∥ρ0∥∞ < M,

1, ∥ρ0∥∞ =M,

(29)
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where M =
√
∥f∥∞ /cW , and t0 ∈ R is such that the right-hand side at t = 0 is

∥ρ0∥∞.

Proof. Suppose cW > 0 and let M :=
√
∥f∥∞ /cW . Then the unique solution to

the ODE {
G′(t) = ∥f∥∞ − cWG(t)2, t ≥ 0,

G(0) = ∥ρ0∥∞ ,

is given by

G(t) =M


coth (cWM(t+ t0)) , G(0) > M,

tanh (cWM(t+ t0)) , G(0) < M,

1, G(0) =M,

where t0 ∈ R is such that G(0) = ∥ρ0∥∞. Then (8) implies ∂+t ∥ρt∥∞ ≤ G′(t) for
all t ∈ [0, T ⋆) and thus ∥ρt∥∞ ≤ G(t) for all t ∈ [0, T ⋆). In particular, if T ⋆ were
finite then ∥ρt∥∞ ≤ G(t) → G(T ⋆) <∞ as t ↑ T ⋆, contradicting Theorem 3.2.

This also proves Proposition 2.2. The positive assertions of Theorems 2.3 and 2.4
are now straightforward consequences of Corollary 3.9, and the sharpness follows
from Theorem 2.5.

Proof of Theorems 2.3 and 2.4. Suppose that cW > 0, put M :=
√

∥f∥∞ /cW , and
let ρ0 ∈ X+. If ∥ρ0∥∞ = M , then (29) implies ∥ρt∥∞ ≤ M = ∥ρ0∥∞ for all
t ∈ [0, T ⋆). If ∥ρ0∥∞ < M , then (29) implies

∥ρt∥∞ ≤M tanh(cWM(t+ t0)) < M,

for all t ∈ [0, T ⋆). If ∥ρ0∥∞ > M , then

∥ρt∥∞ ≤M coth(cW (t+ t0)) =: G(t),

for all t ∈ [0, T ⋆). Since G(0) > M , we must have t0 > 0. Thus, G is strictly
decreasing on [0,∞), so

∥ρt∥∞ ≤ G(t) < G(0) = ∥ρ0∥∞ , t ∈ (0, T ⋆).

For the sharpness statements, suppose first that cW > 0 and M <
√
∥f∥∞ /cW .

Then it suffices to show that there exists ρ0 ∈ X+ with ∥ρ0∥∞ =M and ∂+
t ∥ρt∥∞

∣∣∣
t=0

> 0. For that purpose note that ∥f∥∞ − cWM2 > 0, so there is c > cW such that
still ∥f∥∞ − cM2 > 0. Then there exists by Theorem 2.5 a ρ0 ∈ C∞

c+(Rd) with
∥ρ0∥∞ =M and

∂+t ∥ρt∥∞
∣∣∣
t=0

> ∥f∥∞ − c ∥ρ0∥2∞ = ∥f∥∞ − cM2 > 0.

Now suppose that cW < 0 and M > 0. Then again it suffices to show that there
exists ρ0 ∈ X+ with ∥ρ0∥∞ = M and ∂+t ∥ρt∥∞ > 0. Let cW < c < 0, then by
Theorem 2.5 there exists ρ0 ∈ C∞

c+(Rd) with ∥ρ0∥∞ =M and

∂+t ∥ρt∥∞
∣∣∣
t=0

> ∥f∥∞ − c ∥ρ0∥2∞ ≥ ∥f∥∞ ≥ 0.

In the following subsections, we prove Lemmas 3.5 to 3.8, as well as Lemma 2.7
(stated in Section 2) which establishes existence of the limits defining ηW and αW .
Finally, we prove the claim made in the introduction regarding the asymptotics of
(1) with W ≡ 0.
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3.2.1. Proofs of Lemmas 2.7 and 3.5. Using the same argument as in the proof of
Lemma 3.1, we can show that (A)(ii) implies

∥∆W ⋆ g∥Wγ,∞ ≤ C|||g|||γ (30)

for any γ ≥ 0 and g ∈ X γ (where C > 0 depends on γ but not g). We further need
the following technical lemma.

Lemma 3.10. There is C > 0 such that for any g ∈ W1,∞ with g(0) = 0 and any
ε > 0, there exists g̃ ∈ W1,∞ with g̃ = g on B(0, ε), g̃ ≡ 0 on Rd \ B(0, 2ε), and
∥g̃∥W1,∞ ≤ C ∥g∥W1,∞(B(0,ε)).

Proof. Define g̃ in radial coordinates by

g̃(r, φ) :=


g(r, φ), r < ε,

g(2ε− r, φ), ε ≤ r < 2ε,

0, 2ε ≤ r,

where φ stands collectively for all d − 1 angular variables. Then g̃ is continuous,
∥g̃∥L∞ ≤ ∥g∥L∞(B(0,ε)) and ∥g̃∥Lip ≤ ∥g∥Lip(B(0,ε)), where

∥h∥Lip(Ω) := sup
x,y∈Ω
x̸=y

|h(x)− h(y)|
|x− y|

for h : Rd → R and Ω ⊂ Rd. Then recall the well-known result that W1,∞ =
C0,1(Rd), the space of bounded Lipschitz functions.

The following lemma is identical to Lemma 3.5 except that ηW is replaced by a
possibly different value η′W . We then show together with Lemma 2.7 (which proves
existence of αW and ηW ) that ηW = η′W .

Lemma 3.11. There exist η′W ∈ R and ξW ∈ Rd such that for any g ∈ X 1∩C1(Rd)
(in particular any g ∈ X γ with γ > 1),

∇ · (∇W ⋆ g) = (∆W ) ⋆ g − η′W g + ξW · ∇g.

If W (x) =W (−x) for all x ∈ Rd \ {0}, then ξW = 0.

Proof. We prove the claim at a fixed but arbitrary x0 ∈ Rd, and assume without
loss of generality that x0 = 0. Recall that ∇W ⋆ g ∈ W1,∞ for any g ∈ X 1 by
Lemma 3.1, so it is bounded and globally Lipschitz continuous. This remains true
if we replace g by gφε for a smooth radially symmetric bump function φε with
1B(0,ε) ≤ φε ≤ 1B(0,2ε). Put ψε := 1− φε. Then,

∇ · (∇W ⋆ g) = ∇ · (∇W ⋆ gψε) +∇ · (∇W ⋆ gφε).

Now,

∇ · (∇W ⋆ gψε)(0) = ∇ ·
(∫

∇W (· − y)g(y)ψε(y) dy

)
(0) = (∆W ⋆ gψε)(0),

because ∆W is bounded away from zero. More precisely, as long as x ∈ B(0, ε/2),
say, then |x− y| ≥ |y| − |x| ≥ ε/2 for any y ∈ Rd with ψε(y) > 0, and supB(0,ε/2)c

∆W <∞ by (A)(ii). By (30), ∆W ⋆ g is well-defined, hence by dominated conver-
gence, (∆W ⋆ gψε)(0) → (∆W ⋆ g)(0) as ε→ 0. Thus,

F [g] := lim
ε→0

∇ · (∇W ⋆ gφε)(0) = ∇ · (∇W ⋆ g)(0)− (∆W ⋆ g)(0)
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exists and is finite for any g ∈ X 1. Inspecting the RHS above we see that

F is linear and |F [g]| ≤ C|||g|||1.
Indeed, |F [g]| ≤ ∥∇ · (∇W ⋆ g)∥L∞ + ∥∆W ⋆ g∥L∞ , and

∥∇ · (∇W ⋆ g)∥L∞ ≤ ∥∇W ⋆ g∥W1,∞ ≤ C|||g|||1
by Lemma 3.1, and ∥∆W ⋆ g∥L∞ ≤ C|||g|||1 by (30). Furthermore, from the defini-
tion it is immediate that F [g] depends on g only locally around 0, in the sense that
F [g1] = F [g2] if g1, g2 ∈ X 1 coincide in a neighbourhood of 0.

Now suppose that g ∈ X 1 with g(0) = 0. Let ε ∈ (0, 1), then by Lemma 3.10
there is g̃ ∈ X 1 such that g̃ = g on B(0, ε), g̃ ≡ 0 on Rd \ B(0, 2ε) and |||g̃|||1 ≤
C ∥g̃∥W1,∞ ≤ C ∥g∥W1,∞(B(0,ε)) with constants independent of g and ε (the first

inequality holds because ρ̃ is supported in B(0, ε) ⊂ B(0, 1)). This implies that
|F [g]| = |F [g̃]| ≤ C|||g̃|||1 ≤ C ∥g∥W1,∞(B(0,ε)). Letting ε→ 0 implies

∀g ∈ X 1, g(0) = 0: |F [g]| ≤ C lim
ε→0

∥g∥W1,∞(B(0,ε)) .

In particular, if g ∈ X 1∩C1(Rd) and g(0) = ∇g(0) = 0 then F [g] = 0. By linearity,
there must be η′W ∈ R and ξW ∈ Rd with

F [g] = −η′W g(0) + ξW · ∇g(0)
for all g ∈ X 1∩C1(Rd). Now suppose that W (x) =W (−x) for all x ∈ Rd. To show
that ξW = 0 it suffices to prove that whenever g ∈ X 1∩C1(Rd) with g(0) = 0, then
F [g] = 0. Since we already know that F [g] does not change when we replace g by a
function in X 1 ∩C1(Rd) that has the same value and gradient at 0, we may assume
that g(x) = β · x for all x ∈ B(0, 1), where β = ∇g(0). Then,

∇ · (∇W ⋆ gφε)(0) = β · (∇W ⋆ φε)(0) + (∇W ⋆ g∇φε)(0)

= β ·
∫

∇W (x)φε(x) dx+ β ·
∫
x(∇W (x) · ∇φε(x)) dx = 0,

because both integrands are antisymmetric, hence F [g] = 0.

We now prove Lemma 2.7, which establishes existence of ηW and αW , and show
that ηW = η′W . Note that ⟨∇WN ⟩ (r) = −c−1

d r1−d, so equivalently to (10) we could
write

ηW = −cd lim
r→0

rd−1 ⟨∇W ⟩ (r), αW = −cd lim
R→∞

Rd−1 ⟨∇W ⟩ (R).

Proof of Lemma 2.7. Let (gε)ε>0 be a smooth approximation to unity with gε sup-
ported in B(0, ε) for all ε > 0. Then by Lemma 3.11 and (9), and recalling that
cd > 0 denotes the surface area of the unit ball in Rd,∫

∂B(0,R)

(∇W ⋆ gε) · dn̂ =

∫
B(0,R)

∇ · (∇W ⋆ gε)(x) dx

= −η′W
∫
B(0,R)

gε(x) dx+ ξW ·
∫
B(0,R)

∇gε(x) dx

+

∫
B(0,R)

(∆W ⋆ gε)(x) dx

= −η′W +

∫
B(0,R)

(∆W ⋆ gε)(x) dx,

(31)
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where we used that
∫
B(0,R)

∇gε(x) dx = 0 by integration by parts. We want to take

ε→ 0 for fixed R > 0. On the LHS we obtain∫
∂B(0,R)

(∇W ⋆ g) · dn̂ −→
∫

∂B(0,R)

∇W · dn̂ = cdR
d−1 ⟨∇W ⟩ (R),

by dominated convergence, which is applicable because ∇W is bounded away from
the origin by (A)(ii). For the RHS, we cannot directly apply dominated or monotone
convergence without further assumptions on ∆W . Instead, we write ∆W ⋆ gε =
(∆W )+ ⋆ gε − (∆W )− ⋆ gε, and∫

B(0,R)

[(∆W )+ ⋆ gε](x) dx =

∫
B(0,R)

∫
B(0,ε)

(∆W )+(x− y)gε(y) dy dx

=

∫
B(0,ε)

gε(y)

(∫
B(y,R)

(∆W )+(x) dx

)
dy.

(32)

Now, for any y ∈ B(0, ε), if say ε < R/2,∣∣∣∣∣
∫
B(0,R)

∆W (x)+ dx−
∫
B(y,R)

∆W (x)+ dx

∣∣∣∣∣ ≤
∫

B(0,R)∆B(y,R)

|∆W (x)|dx

≤ CεRd−1 sup
|z|≥R/2

|∆W (z)|,

where A∆B = (A \ B) ∪ (B \ A) for A,B ⊂ Rd. This goes to zero as ε → 0, so
continuing in (32),∫

B(0,ε)

gε(y)

(∫
B(y,R)

(∆W )+(x) dx

)
dy

=

∫
Rd

gε(y)

(∫
B(0,R)

(∆W )+(x) dx+O(ε)

)
dy

−→
∫
B(0,R)

(∆W )+(x) dx,

as ε→ 0. We can proceed similarly with (∆W )− and combine the results to obtain∫
B(0,R)

(∆W ⋆ gε)(x) dx −→
∫
B(0,R)

∆W (x) dx

as ε→ 0. We have now shown that letting ε→ 0 in (31) yields

−η′W +

∫
B(0,R)

∆W (x) dx = cdR
d−1 ⟨∇W ⟩ (R) = − ⟨∇W ⟩ (R)

⟨∇WN ⟩ (R)
,

where we recalled ⟨∇WN ⟩ (R) = −c−1
d R1−d. If we let R → 0, then the LHS tends

to −η′W because ∆W is locally integrable. Thus the limit on the RHS exists, so
ηW in (10) is well-defined and equals η′W . If we let R→ ∞, then the LHS tends to
−ηW +

∫
∆W by (A)(iii), which implies that αW in (10) is well-defined and that

αW = ηW −
∫
(∆W ) holds.
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3.2.2. Proof of Lemma 3.6. We already proved (27) just before stating Lemma 3.6,
so it remains to prove sharpness.

Proof of Lemma 3.6, Sharpness. Let c > cW , x0 ∈ Rd and M > 0. We will con-
struct a function g ∈ C∞

c+(Rd) such that g has a global maximum of height M at
x0 and ∇ · (∇W ⋆ g)(x0) > −cg(x0). Because this inequality is linear in g, we may
assume M = 1. Put U :=

{
x ∈ Rd \ {0} : ∆W (x) > 0

}
, which is an open, possibly

empty subset of Rd \ {0}. For ε > 0 let

Uε := {x ∈ U : d(x, U c) > ε} ,

which is also open and
⋃

ε>0 Uε = U (note that we shrink, not grow U by ε).

Put hε := φε/2 ⋆ 1Uε∩B(0,ε−1) where φ ∈ C∞
c+(B(0, 1)) with

∫
φ = 1 and φε(x) :=

ε−dφ(ε−1x). Then hε ∈ C∞
c+(Rd) and

1U2ε∩B(0,(2ε)−1) ≤ hε ≤ 1Uε/2
. (33)

In particular 0 ≤ hε ↑ 1U as ε → 0, and, since hε is supported on U for all ε > 0,
and by monotone convergence,∫

Rd

∆W (x)hε(x) dx =

∫
Rd

(∆W )+(x)hε(x) dx ↑
∫
(∆W )+, ε→ 0. (34)

Furthermore, by (33), hε ≡ 0 on B(0, ε/2), in particular hε(0) = ∆hε(0) = 0.
Now let fε ∈ C∞

c+(B(x0, ε/2)) with fε(x0) = 1, ∆fε(x0) = 0, 0 ≤ fε ≤ 1. In
particular fε → 0 a.e. as ε→ 0, and by dominated convergence (recall that ∆W is
locally integrable by (A)(ii)),

(∆W ⋆ fε)(x) → 0, ε→ 0, (35)

for any x ∈ Rd. Now put

gε := hε(x0 − ·) + fε ∈ C∞
c+(Rd), ε > 0.

Recall that hε(x0−·) is supported in B(x0, ε/2)
c and fε is supported in B(x0, ε/2),

and both are upper bounded by 1, so 0 ≤ gε ≤ 1. Furthermore,

gε(x0) = hε(0) + fε(x0) = 1, ∆gε(x0) = ∆hε(0) + ∆fε(x0) = 0,

so gε attains a global maximum at x0, and by (34) and (35),

(∆W ⋆ gε)(x0) = (∆W ⋆ hε)(0) + (∆W ⋆ fε)(x0) →
∫

(∆W )+, ε→ 0.

Now choose ε > 0 so small that (∆W ⋆ gε)(x0) >
∫
(∆W )+ − (c− cW ), then

∇ · (∇W ⋆ gε) = (∆W ⋆ gε)(x0)− ηW gε(x0)

= (∆W ⋆ gε)(x0)−
∫

(∆W )+ − cW

> −c
= −cgε(x0),

where we used ηW = cW +
∫
(∆W )+, see (11).
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3.2.3. Proof of Lemmas 3.7 and 3.8.

Proof of Lemma 3.7. It suffices to show that for any fixed t0 ∈ [0, T ), and every
ε, ε′ > 0,

∥gt∥∞ ≤ ∥gt0∥∞ +

∫ t

t0

(
C(s) + ε

)
ds+ ε′, t ∈ [t0, T ]. (36)

Indeed, taking ε′ ↓ 0, this implies that (36) holds for all t ∈ [t0, T ], ε > 0, and
ε′ = 0. Thus, for every ε > 0,

∂+t ∥gt∥∞
∣∣∣
t=t0

= lim
t↓t0

∥gt∥∞ − ∥gt0∥∞
t− t0

≤ lim
t↓t0

1

t− t0

∫ t

t0

(
C(s) + ε

)
ds = C(t0) + ε,

which implies the claim at t0 by taking ε ↓ 0.
Now fix t0 ∈ [0, T ), ε, ε′ > 0, and we show (36). We may assume that t0 = 0.

We want to show that

F (t) := ∥gt∥∞ − ∥g0∥∞ −
∫ t

0

(
C(s)− ε

)
ds− ε′ ≤ 0 (37)

for all t ∈ [0, T ]. Define

t1 := sup {t ∈ [0, T ] : F (t) ≤ 0} .

F is continuous because g ∈ C([0, T ], L∞), and F (0) = −ε′ < 0, so t1 > 0. Now if
F (t) ≤ 0 does not hold for all t ∈ [0, T ], then t1 < T , so there would be T > tn ↓
t1 > 0 such that F (t) ≤ 0 for all 0 ≤ t ≤ t1 and F (tn) > 0 for all n ∈ N. Since
gtn is Lipschitz continuous and integrable it must vanish at infinity, so it attains its
maximum at some xn ∈ Rd and we have

F (tn) = g(tn, xn)− ∥g0∥∞ −
∫ tn

0

(
C(s) + ε

)
ds− ε′ > 0, n ∈ N. (38)

In particular, g(tn, xn) ≥ ε′ for all n ∈ N, so g(t1, xn) ≥ ε′/2 for all n ≥ n0 for
some n0 ∈ N, because g ∈ C([0, T ], L∞). Then by Lipschitz continuity of g(t1, ·) in
space, infn∈N

∫
B(xn,1)

g(t1, y) dy > 0, which would contradict integrability of g(t1, ·)
if (xn) were unbounded. Hence (xn) must be bounded, without loss of generality
already convergent to some x1 ∈ Rd. Then, using (37) and (38),

F (t1) = ∥gt1∥∞ − ∥g0∥∞ −
∫ t1

0

(
C(s) + ε

)
ds− ε′,

and

F (t1) = lim
n→∞

F (tn) = g(t1, x1)− ∥g0∥∞ −
∫ t1

0

(
C(s) + ε

)
ds− ε′,

so ∥gt1∥∞ = g(t1, x1). Thus by assumption ∂tg(t1, x1) ≤ C(t1), so

∀x ∈ Rd : g(t1, x)− ∥g0∥∞ −
∫ t1

0

(
C(s) + ε

)
ds− ε′ ≤ F (t1) = 0,

∂t

[
g(·, x1)− ∥g0∥∞ −

∫ t

0

(
C(s) + ε

)
ds− ε′

]
t=t1

≤ C(t1)−
(
C(t1) + ε

)
= −ε < 0.

But this implies, since ∂tg is jointly continuous, that the second inequality holds in

[t1, t1+δ)×B(x1, δ) for some δ > 0, so in fact g(t, x) < ∥g0∥∞+
∫ t

0

(
C(s)+ε

)
ds+ε′
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for all (t, x) ∈ (t1, t1+δ)×B(x1, δ), which contradicts the fact (38) that g(tn, xn) >

∥g0∥∞ +
∫ t

0

(
C(s) + ε

)
ds+ ε′ for all n ∈ N.

Proof of Lemma 3.8. Let ρ0 ∈ X+, T ∈ (0, T ⋆), and fix γ ∈ (2, 2 + γf ). Then
by Theorem 3.3, ρ ∈ C([0, T ],X+) ∩ C((0, T ],X γ), in particular ρt is Lipschitz
continuous for t ∈ (0, T ]. It remains to prove that ∂tρ is jointly continuous on
[δ, T ] × Rd for any δ > 0. By the instant regularisation proved in Theorem 3.3,
ρδ ∈ X γ , so we may as well assume that ρ0 ∈ X γ and δ = 0. Then we know that ρ
solves (1) on [0, 1], so

∂tρt = ∆ρt +∇ · (ρt(∇W ⋆ ρt)) + f. (39)

Using ρ ∈ C([0, 1],X γ) and Lemmas 3.1 and 3.5 and (30), it is straightforward
to confirm through direct calculation that the RHS in (39) and therefore ∂tρ ∈
C([0, 1],Wγ−2,∞), where Wγ−2,∞ = C0,γ−2(Rd) (see (43) in Appendix B) with
γ−2 ∈ (0, 1). In particular, ∂tρ is continuous in time, and (γ−2)-Hölder continuous
in space uniformly on [0, T ]. This implies joint continuity

3.2.4. Asymptotics of solution in absence of repulsion. We close by presenting a
proof of a simple claim made in the introduction regarding the asymptotics of (1)
with W ≡ 0.

Lemma 3.12. Let f ∈ X+ not a.e. zero, and put ρt :=
∫ t

0
Gs ⋆ f ds for t ≥ 0.

(i) If d ≤ 2, then ρt ↑ ∞ locally uniformly.

(ii) If d ≥ 3, then ρt ↑ ρ where ρ ∈ L∞.

Proof. (i) We may assume
∫
B(0,1)

f(x) dx ≥ 1. Then, for any x ∈ Rd,

ρt(x) =

∫ t

0

Gs ⋆ f(x) ds ≥
∫ t

0

∫
B(0,1)

f(y)Gs(x− y) dy ds

≥
∫ t

0

(2πs)−d/2e−(|x|+1)2/(2s) ds

≥ e−(|x|+1)2/2

∫ t

1

(2πs)−d/2 ds,

which if d ≤ 2 goes to ∞ locally uniformly in x as t→ ∞.

(ii) We have ρt ↑ ρ :=
∫∞
0
Gs ⋆ f ds = G ⋆ f as t→ ∞, where

G(x) :=

∫ ∞

0

Gs(x) ds = c(d) |x|2−d
, x ∈ Rd,

for some c(d) > 0 is the well-known Green’s function of the Laplace equation
in d ≥ 3. Then G is integrable at the origin and bounded away from the
origin, and f is both bounded and integrable, so G ⋆ f is bounded.

4. Conclusion and outlook. We established sharp conditions on the repulsive
potential for a form of the maximum principle (4) and a strong notion of global
boundedness (3) to hold. The latter is especially interesting in light of the motiva-
tion from population biology – see the introduction and Appendix A – because it
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gives a sufficient condition on W for global boundedness of solutions in the sense
that

∀ρ0 ∈ X+ : sup
t≥0

∥ρt∥∞ <∞. (40)

Note however that (3) is a much stronger property than (40), which we would expect
to hold under weaker assumptions: cW > 0 necessitates both ηW > 0 and αW > 0,
that is a singular repulsion and |∇W (x)| ≳ |x|1−d for large |x|. However, we would
expect that (40) should also hold for a sufficiently strong smooth repulsion, and
it seems unlikely that |∇W (x)| ≳ |x|1−d is sharp; for example if d ≥ 3, then (40)
already holds with W = 0. Ongoing work tentatively suggests that the critical
strength of the repulsion for (40) is |∇W (x)| ≳ |x|−1 if d = 1 and |∇W (x)| ≳ |x|−3

if d = 2 (and none if d ≥ 3).
Another direction for future research would be to study non-negative steady

states associated with (1), whose existence we would generally expect to be related
to (40).
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Appendix A. Connection with stability of population dynamics.We present
here in some more detail the connection between the asymptotic behaviour of so-
lutions to (1) and long-term (in-)stability of branching particle systems (BPS). We
will explain how the dichotomy observed in the introduction is related to the fact
that an ordinary BPS (without immigration or interaction) started from infinite
mass is unstable in dimensions d ≤ 2 in the sense that the process’ mass con-
centrates, as time goes on, in increasingly large “clumps”, with space in between
growing increasingly empty.

SuperBrownian motion. Long-term instabilities of a BPS, for now without im-
migration or interaction, are due to random fluctuations in the branching mech-
anism, so if we want to study them using a scaling limit, then the scaling needs
to retain stochasticity. Indeed, the hydrodynamic rescaling just leads to the heat
equation, which has stable long-term behaviour in any dimension. A well-studied
approach to retain stochasticity is to scale up the branching rate at the same time as
the particle density, leading to a measure-valued process called superBrownian mo-
tion (SBM) [24, 42]. Formally, it solves the stochastic partial differential equation
(SPDE)

dXt =
1

2
∆Xt dt+

√
γXt dWt, (41)

for a space-time white noise W, and a parameter γ > 0 called the branching vari-
ance; note that setting γ = 0 recovers the hydrodynamic limit (the heat equation).
If d ≥ 2, then Xt is singular w.r.t. Lebesgue measure, and (41) is ill-posed and has
to be replaced with a martingale problem.
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The pain in the torus. We will now explain heuristically why a SBM started
from infinite mass, or from finite mass but conditioned on survival, is unstable
in dimensions d ≤ 2, and how this is related to (1). In short, for large times t,
an increasingly small number of individuals that were alive at time zero will be
ancestral to the entire population at time t, and if d ≤ 2 then the diffusion is
not “fast enough” to disperse and spread these large families, and they form well-
separated clumps. It is this that underpins the problem famously dubbed “the pain
in the torus” by Felsenstein [27]; see also Kallenberg [35] (esp. Cor. 6.5) for similar
observations in the context of cluster fields.

Let us now consider an SBM started from Lebesgue measure, and make this idea
a bit more precise. We cut Rd into a grid of unit sized cubes, and regard the initial
mass in each of them as one family. Due to the independent branching, we can let
each of the families evolve independently from each other, and obtain the process
started from Lebesgue measure as their superposition (this is called the branching
property, see e.g. [24, p. 2]). Each family is a critical branching process started
from finite mass, so the probability that it is still alive at time n is proportional to
1/n, and, if alive, its expected size is proportional to n [42, Thm. II.1.1]. Hence, in
expectation, after n units of time all but every n’th family has gone extinct, and
each of the living families consists of order n individuals. Due to their diffusive
movement, each family will have spread over an area of radius ∼

√
n, hence the

population density of any surviving family is ∼ n1−d/2. In the critical case d = 2,
this crude heuristic misses a factor log n (c.f. (42) below), so the density of the
surviving families diverges as n → ∞ if and only if d ≤ 2, in which case they form
separated clumps.

This means that the dichotomy between stable long-term dynamics and clumping
can really be understood as the dichotomy between unbounded and bounded as-
ymptotic population density of a single surviving family, that is, a finite mass SBM
conditioned on survival. It is a classical result due to Evans [26] that the distribu-
tion of this process is that of a single “immortal particle” that follows the path of
a Brownian motion and throws off mass at a constant rate, which then evolves like
an ordinary SBM, independent of the immortal particle. This is not unexpected: In
the unconditioned process, at large times the entire population will have descended
from increasingly few ancestors that were alive at time zero, until eventually none
remain and the process goes extinct; the conditioning imposes that one of those
ancestors—the immortal particle—will never perish. If (Zt) is a Brownian motion
that denotes the path of the immortal particle, then the SBM (Xt) conditioned on
survival, which we may now as well start from zero, formally satisfies the SPDE

dXt =

(
1

2
∆Xt + γδZt

)
dt+

√
γXt dWt, X0 = 0,

where δz is the Dirac delta at z ∈ Rd. Then the mean measure conditional on (Zt)

has a density ρt that solves ∂tρ = 1
2∆ρ + γδZt

, so ρt = γ
∫ t

0
Gt−s(· − Zs) ds. If we

centre the process around the immortal particle by putting

ρ̃t(·) := ρt(·+ Zt) = γ

∫ t

0

Gt−s(·+ Zt − Zs) ds,

which has expectation γ
∫ t

0
G2s(·) ds, then we can find
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E [Xt(B(Zt, 1))] =

∫
B(0,1)

E [ρ̃t(x)] dx = γ

∫ t

0

∫
B(0,1)

G2(t−s)(x) dx ds

∝


√
t, d = 1,

log t, d = 2,

1, d ≥ 3.

(42)

Therefore, at least in expectation, mass accumulates in the vicinity of the immortal
particle for large times if d ≤ 2, and remains bounded if d ≥ 3. This recovers the
picture painted in the beginning of the section: In dimensions d ≤ 2, a SBM started
from infinite mass concentrates in increasingly few large clumps (centred around
the ancestors of the surviving families), with space in between growing increasingly
empty.

Introducing repulsion. As a model for a spatially evolving population (for which
d = 2 is the most natural dimension), this is very unrealistic, and a better model
should reflect stable long-term population dynamics. One of the most obvious
reasons this clumping phenomenon does not occur in nature is that real individuals
do not behave independently from surrounding individuals, as is assumed in the
model underlying SBM. Indeed, a high population density leads to resource scarcity
and decreases the average number of offspring, and causes migration away from the
overcrowded area. The former effect has already been successfully integrated into
the SBM model and been shown to lead to stable long-term dynamics [25]. The
latter however, has not yet been studied in this context. A natural way to implement
this is to introduce a pairwise repulsion between individuals, which corresponds to
the term involving W in (1).

If we again consider a single surviving family, that is a finite mass superprocess
conditioned on survival, then again this will be described by an immortal particle
that constantly immigrates mass into the system, which will now be repulsed from
the mass it throws off. Formally, we arrive at

dXt =

(
1

2
∆Xt +∇ · (Xt∇W ⋆Xt) + γδZt

)
dt+

√
γXt dWt,

dZt = dBt −∇W ⋆Xt(Zt) dt,

for independent space-time white noise W and Brownian motion B. This turns out
to be a very complicated process, and a natural first step is to study it without the
noise; if the equation were linear, this would be the same as taking expectations
conditional on (Zt). If we also replace the Dirac immigration with a bounded
function centred on Zt—which should not change the behaviour of the system with
regards to clumping behaviour, but makes the equation more regular—then we
arrive exactly at (1) with a time-dependent immigration (recall Remark 2.6), and
the question we want to answer is under what assumptions on the repulsion does
its solution exhibit bounded long-term behaviour in dimensions one and two.

Appendix B. Fractional Sobolev spaces. We give a minimal definition of frac-
tional Sobolev spaces, and refer the reader to [19, 18, 7] for detailed introductions.
For p ∈ [1,∞), s ∈ (0, 1), and u : Rd → R measurable let

[u]Ws,p :=

(
s(1− s)

∫
Rd

∫
Rd

|u(x)− u(y)|p

|x− y|d+sp
dxdy

)1/p

,
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and

[u]Ws,∞ = sup
x ̸=y

|u(x)− u(y)|
|x− y|s

. (43)

For k ∈ N, s ∈ (k, k + 1), and p ∈ [1,∞], let

[u]Ws,p :=
∑
|α|=k

[∂αu]Ws−k,p ,

with the usual notation for multi-indices α. Then

∥u∥Ws,p =
(
∥u∥pW⌊s⌋,p + [u]pWs,p

)1/p
for p ∈ [1,∞), and

∥u∥Ws,∞ = ∥u∥W⌊s⌋,∞ + [u]Ws,∞ , (44)

define the fractional Sobolev norms.
For two normed spaces write A ↪→ B if A ⊂ B with continuous inclusion.

Lemma B.1. If 0 ≤ γ ≤ β and p ∈ [1,∞], then Wβ,p ↪→ Wγ,p.

Proof. Assume 0 < γ < β, otherwise there is nothing to show. Then the claim
follows because Wγ,p can be written as interpolation space between Lp and Wβ,p,
so ∥·∥Wγ,p ≤ C(∥·∥Lp + ∥·∥Wβ,p) ≤ C ∥·∥Wβ,p . See [12, Appendix A] for details on
interpolation spaces in the context of Sobolev norms.

Lemma B.2. (i) If γ > 0, γ ̸∈ N, then X γ ↪→ Wγ,∞ = C⌊γ⌋,γ−⌊γ⌋(Rd).

(ii) If γ ≥ 1, then X γ ↪→ Wγ,∞ ↪→ C⌊γ⌋−1,1(Rd).

Proof. First note that X γ ↪→ Wγ,∞ by definition of X γ , see (14).

(i) For any k ∈ N0 and γ ∈ (k, k+1), if f : Rd → R is k-times differentiable then
∥f∥Wγ,∞ = ∥f∥Ck,γ−k(Rd) by definition, see (15), (43) and (44). Hence we

only have to prove that any f ∈ Wγ,∞ for γ > 0 is ⌊γ⌋-times differentiable.

There is nothing to prove for γ ∈ (0, 1), so suppose the claim is true for
γ ∈ (0, k) \N for some k ∈ N0 and let f ∈ Wγ,∞ for some γ ∈ (k, k + 1). Put
β := γ − ⌊γ⌋. Then f is continuous because Wγ,∞ ⊂ W1,∞ = C0,1(Rd) (the
last equality is a well-known theorem). Furthermore f ∈ Wγ,∞ ⊂ W1+β,∞,
so f has partial weak derivatives of first order that are β-Hölder continuous,
so they are in fact proper derivatives 1. By the induction hypothesis, all first
partial derivatives are themselves (⌊γ⌋ − 1) times differentiable.

(ii) Since Wγ,∞ ↪→ W⌊γ⌋,∞, it suffices to show that Wk,∞ ↪→ Ck−1,1(Rd) for all
k ∈ N. This is a well-known theorem for k = 1. Suppose now it is proved
for some k ∈ N, and let f ∈ Wk+1,∞. Then by (i), f has proper first partial
derivatives, and they are in Wk,∞ ↪→ Ck−1,1(Rd), so in fact f is k-times
differentiable and, by the induction hypothesis,

∥f∥Wk+1,∞ = ∥f∥∞ +

d∑
i=1

∥∂if∥Wk,∞

1Let d = 1 and φε an approximation to unity in R, x > 0, and put ψε := φε ⋆ 1[0,x], then∫ x

0
f ′(y) dy ←

∫
R
ψε(y)f

′(y) dy = −
∫
R
ψ′
ε(y)f(y) dy = f(x)− f(0),

so f(x) = f(0) +
∫ x
0 f ′(y) dy. Analogously for x < 0. Since f ′ is continuous, f is in fact differen-

tiable in the classical sense with derivative f ′. This also works in d ≥ 2.
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≤ ∥f∥∞ + C

d∑
i=1

∥∂if∥Ck−1,1

≤ C ∥f∥Ck,1 .

Lemma B.3. Let 0 ≤ γ < β. Then there is C > 0 such that the following hold.

(i) If f, g ∈ Wγ,∞, then fg ∈ Wγ,∞ and ∥fg∥Wγ,∞ ≤ C ∥f∥Wγ,∞ ∥g∥Wγ,∞ ,

(ii) If f ∈ Wγ,1, g ∈ Wβ,∞, then fg ∈ Wγ,1 and ∥fg∥Wγ,1 ≤ C ∥f∥Wγ,1 ∥g∥Wβ,∞ .

Proof. If γ ∈ N0 and p ∈ {1,∞}, then for any multi-index |α| ≤ γ,

∥∂α(fg)∥Lp =

∥∥∥∥∥ ∑
α1+α2=α

(∂α1f)(∂α2g)

∥∥∥∥∥
Lp

≤
∑

α1+α2=α

∥∂α1f∥Lp ∥∂α2g∥L∞

≤ C ∥f∥Wγ,p ∥g∥Wγ,∞ .

and both claims follow. If γ ̸∈ N0, we need to show the claim with the LHS
replaced by [fg]Wγ,p . By a similar application of the product rule it suffices to
consider γ ∈ (0, 1). If p = ∞, then

[fg]Wγ,∞ = sup
x ̸=y

|f(x)g(x)− f(y)g(y)|
|x− y|γ

≤ ∥f∥L∞ [g]Wγ,∞ + ∥g∥L∞ [f ]Wγ,∞

≤ 2 ∥f∥Wγ,∞ ∥g∥Wγ,∞ .

If p = 1, then

[fg]Wγ,1 = γ(1− γ)

∫ ∫
|f(x)g(x)− f(y)g(y)|

|x− y|d+γ
dx dy

≤ C ∥g∥L∞ [f ]Wγ,1 +

∫ ∫
|f(y)| |g(x)− g(y)|

|x− y|d+γ
dxdy.

We split the integral according to |x− y| ≤ 1 or > 1. The former contribution can
be bounded by

[g]Wβ,∞

∫∫
|x−y|≤1

|f(y)|
|x− y|d+γ−β

dxdy ≤ C [g]Wγ,∞ ∥f∥L1 ,

where we used that
∫
B(0,1)

|x|−d+β−γ
dx ≤ C

∫ 1

0
r−1+β−γ dr <∞. The contribution

with |x− y| > 1 can be bounded by

2 ∥g∥L∞

∫∫
|x−y|>1

|f(y)|
|x− y|d+γ

dxdy ≤ C ∥g∥L∞

∫
|f(y)|dy = ∥g∥L∞ ∥f∥L1 ,

where we used that
∫
Rd\B(0,1)

|x|−γ−d
dx ≤ C

∫∞
1
r−1−γ dr <∞.
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Poincaré, 24 (2023), 931-956.
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